发布时间: 2025-11-04 09:45:07来源:智车行家
第二代半导体衬底材料即 III-V 族化合物半导体材料,主要包括砷化镓(GaAs)、磷化铟(InP),具有电子迁移率高、光电性能好等特点,是当前仅次于硅之外最成熟的半导体材料,在高频、高功耗、高压、高温等特殊应用领域,磷化铟衬底在光通信领域占据核心地位,尤其是在高速光纤通信系统中发挥着不可替代的作用。现代光通信系统依赖于高效、稳定的光源和探测器,而磷化铟基器件凭借其优异的光电性能,成为实现长距离、大容量数据传输的关键支撑。除了传统的光纤通信,磷化铟衬底还在新兴的硅光集成技术中发挥重要作用。例如,英特尔、思科等企业已开发出基于磷化铟-硅异质集成的光收发模块,显著提升了数据传输速率并降低了功耗。
01
磷化铟材料在光模块器件中的应用
光模块是光通信的核心器件,是通过光电转换来实现设备间信息传输的接口模块, 主要应用于通信基站和数据中心等领域。磷化铟衬底在光通信领域占据核心地位,尤其是在高速光纤通信系统中发挥着不可替代的作用。现代光通信系统依赖于高效、稳定的光源和探测器,而磷化铟基器件凭借其优异的光电性能,成为实现长距离、大容量数据传输的关键支撑。
在光纤通信网络中,1.3 μm 和1.55 μm 波段是两个主要的低损耗传输窗口,而磷化铟的直接带隙特性使其能够高效发射和探测这两个波段的光信号,从而广泛应用于分布式反馈激光器(DFB)、电吸收调制激光器(EML)以及雪崩光电探测器(APD)等核心器件的制造。
分布式反馈激光器(DFB)是光通信系统中最关键的光源之一,其稳定性和单模输出特性直接影响信号传输质量。基于磷化铟衬底的DFB 激光器通过在外延生长过程中精确控制InGaAsP 多层结构,实现波长的精准调控,确保在1.55 μm 波段提供稳定的单模激光输出。
这类激光器具有窄线宽、低噪声和高调制带宽的特点,广泛应用于密集波分复用(DWDM)系统,支持每波道 100 Gbps 甚至 400 Gbps的数据传输。此外,电吸收调制激光器(EML)将 DFB 激光器与电吸收调制器(EAM)集成在同一磷化铟芯片上,实现了更高的调制速率和更低的功耗,已成为400G 和 800G 光模块的核心光源。
在光接收端,磷化铟基雪崩光电探测器(APD)因其高灵敏度和快速响应能力,被广泛用于长距离光通信系统。APD 利用内部增益机制放大微弱光信号,能够在低光功率条件下实现数据接收,适用于跨洋光缆和城域网等远距离传输场景。此外,基于磷化铟的PIN 光电探测器也广泛应用于短距离光互连,如数据中心内部的光收发模块。随着 5G 网络部署和云计算需求的增长,数据中心对高速光互连的需求急剧上升,推动了基于磷化铟的 25G、50G 乃至 100G 光探测器的规模化应用。
除了传统的光纤通信,磷化铟衬底还在新兴的硅光集成技术中发挥重要作用。尽管硅基光子学在波导和调制器方面取得了显著进展,但硅材料本身无法实现高效的光发射,因此“异质集成”成为解决该问题的关键路径。通过将磷化铟基光源与硅基光路进行晶圆级键合或微转移打印,可以实现高性能的硅光芯片,广泛应用于数据中心光互连、光计算和传感等领域。例如,英特尔、思科等企业已开发出基于磷化铟-硅异质集成的光收发模块,显著提升了数据传输速率并降低了功耗。
5G 通信是具有高速率、低时延和大连接特点的新一代宽带移动通信技术,但 5G建设高峰期已过,中国三大电信运营商5G 投资持续下滑。目前,全球电信运营商正处于从“规模扩张”向“价值深耕”转型的关键期,多家电信运营商向 AI、算力、新兴市场和技术创新转型,寻求新的增长点,因而全球电信光模块市场规模保持稳定增长。根据 Yole 统计,2025 年全球电信光模块(包括 5G 通信市场)市场规模将从2019 年的37 亿美元提升至56 亿美元,2019-2025 年复合增长率为7.15%。
近年来随着人工智能时代的来临,加速AI 应用渗透到各行各业,推动国内算力中心的快速增长,国内外云厂商均纷纷宣布加大AI 的资本开支,光互连作为算力中心的核心基础设施平台,迎来了前所未有的发展机遇。AI 技术的深度应用以及数据中心等对高速光模块需求的不断增加,推动着市场规模持续扩张。根据Yole 统计显示,2025 年全球数据中心光模块市场规模将从 2019 年的 40 亿美元提升至121 亿美元,2019-2025 年复合增长率为 20%。
综合电信和数据中心等下游市场来看,由于英伟达的大量人工智能基础设施订单和数据中心网络升级到800G,2024 年全球光模块市场的收入从 2023 年的109 亿美元同比增长27%到138 亿美元,未来随着由于云服务运营商和国家电信运营商对 400G 以上高数据速率模块的高需求,预计该市场到 2029 年将达到 224 亿美元。

全球光通信行业将迎来重要发展机遇期,从而产生对光模块需求的持续增长。未来,随着6G 通信和太赫兹技术的发展,对更高频率、更大带宽的光通信系统需求将进一步增长。磷化铟衬底因其卓越的高频响应能力,有望在太赫兹波段的光子学应用中发挥更大作用。同时,量子通信技术的兴起也为磷化铟材料带来新的机遇。基于磷化铟的单光子源和量子点激光器正在成为量子密钥分发(QKD)系统的重要组成部分,推动安全通信技术的进步。
总体而言,磷化铟衬底在光通信领域的应用不仅限于当前的高速传输系统,更将在未来的信息基础设施建设中持续发挥关键作用。根据 Yole 统计显示,到 2026 年全球光模块器件磷化铟衬底(折合两英寸)预计销量将超过100 万片,2019 年-2026 年复合增长率达 13.94%,2026年全球光模块器件磷化铟衬底预计市场规模将达到 1.57 亿美元,2019-2026 年复合增长率达 13.94%。

磷化铟材料在传感器件中的应用
由于磷化铟具备饱和电子漂移速度高、导热性好、光电转换效率高、禁带宽度较 高等特性,使用磷化铟衬底制造的可穿戴设备具备脉冲响应好、信噪比好等特性。
因此,磷化铟衬底可被用于制造可穿戴设备中的传感器,用于监测心率、血氧浓度、血压甚至血糖水平等生命体征。此外,使用磷化铟衬底制造的激光传感器可以发出不损害视力的不可见光,可应用于虚拟现实(VR)眼镜、汽车雷达等产品中。
根据Yole 预测,2026 年应用于传感器件领域的磷化铟衬底(折合二英寸)销量将达到 20.54 万片,2019-2026 年年均复合增长率为 35.14%,2026 年应用于传感器件领域的磷化铟衬底市场规模将达到3200 万美元,2019-2026 年年均复合增长率为30.37%。

磷化铟材料在射频器件中的应用
磷化铟衬底在射频(RF)领域展现出卓越的性能优势,尤其在高频、高速、低功耗电子器件的制造中占据重要地位,其高电子迁移率和高饱和电子漂移速度使其成为制造毫米波和太赫兹频段器件的理想材料。相较于传统的硅基 CMOS 和砷化镓(GaAs)器件,磷化铟基异质结双极晶体管(HBT)和高电子迁移率晶体管(HEMT)在高频增益、噪声系数和功率效率方面具有显著优势,广泛应用于5G/6G 通信、卫星通信、雷达系统和高速数字电路等领域。
根据Yole 预测,2019-2025 年应用于射频器件的磷化铟衬底市场规模较为稳定,保持在 1300-1500 万美元左右的水平,到2026 年应用于射频器件的磷化铟衬底(折合二英寸)销量将达到7.63 万片。

在5G 及未来6G 通信系统中,高频段(如24 GHz 以上)的毫米波频谱被广泛用于提升数据传输速率和网络容量。然而,高频信号在传播过程中衰减严重,要求射频前端器件具备更高的增益和更低的噪声。磷化铟HBT 因其优异的电流增益截止频率和最大振荡频率,能够实现数十 GHz 甚至上百 GHz 的工作频率,适用于毫米波功率放大器和低噪声放大器的制造。
例如,基于磷化铟HBT 的功率放大器可在30–100 GHz 频段内提供高效的信号放大,同时保持较低的直流功耗,满足基站和用户终端对能效的要求。此外,磷化铟HEMT 器件凭借其极高的电子迁移率和低寄生电容,能够在太赫兹频段实现超高速开关操作,适用于超高速模拟-数字转换器(ADC)和毫米波成像系统。
在卫星通信和深空探测领域,磷化铟基器件同样发挥着关键作用。由于卫星通信链路距离远、信号微弱,要求接收端具备极高的灵敏度和稳定性。磷化铟低噪声放大器(LNA)因其极低的噪声系数,被广泛应用于地球同步轨道(GEO)和低轨(LEO)卫星的通信载荷中,确保远距离信号的可靠接收。此外,磷化铟HBT还被用于制造高精度频率合成器和混频器,支持Ka 波段(26.5–40 GHz)和Q/V波段(40–75 GHz)的宽带通信,满足高通量卫星(HTS)对大容量数据传输的需求。
在雷达和电子战系统中,磷化铟器件的高功率密度和快速响应能力使其适用于相控阵雷达、合成孔径雷达(SAR)和毫米波成像系统。例如,基于磷化铟 HEMT的T/R(发射/接收)模块可在X 波段(8–12 GHz)和 W 波段(75–110 GHz)实现高增益、低噪声的信号处理,提升雷达系统的分辨率和探测距离。此外,磷化铟基单片微波集成电路(MMIC)能够将多个射频功能集成于单一芯片,大幅减小系统体积和功耗,适用于无人机、导弹导引头和军事通信设备。
近年来,随着自动驾驶和车载雷达技术的发展,77 GHz 和79 GHz 频段的毫米波雷达成为智能汽车感知系统的核心组件。磷化铟 HBT 和 HEMT 器件因其在该频段的优异性能,被用于制造高精度、低延迟的雷达收发芯片,支持高级驾驶辅助系统(ADAS)和自动驾驶功能。尽管目前主流车载雷达仍以硅锗(SiGe)和RF CMOS 技术为主,但磷化铟在更高频率和更高性能需求的应用中展现出巨大潜力。
总体而言,磷化铟衬底 在射频与微波电子领域的应用正不断拓展,尤其是在高频通信、卫星系统和先进雷达技术中发挥着不可替代的作用。随着 6G 通信和太赫兹技术的发展,对更高频率、更低噪声、更高集成度器件的需求将持续增长,进一步推动磷化铟基电子器件的技术进步和市场应用。
02
磷化铟在新兴领域中的应用及磷化铟衬底的未来发展趋势
随着新一代信息技术的快速发展,磷化铟衬底正迎来前所未有的发展机遇。量子计算、人工智能(AI)加速芯片和下一代通信技术(如 6G 和太赫兹通信)的兴起,对高性能半导体材料提出了更高要求,而磷化铟凭借其独特的物理特性,成为支撑这些前沿技术的关键材料之一。
在量子计算领域,磷化铟基半导体量子点被视为实现固态量子比特的重要候选方案。量子点能够精确操控单个电子或空穴的自旋状态,作为量子信息的基本单元。磷化铟及其合金(如InAs/InP)具有较强的自旋-轨道耦合效应和较长的自旋相干时间,有利于实现高速量子门操作和稳定的量子态存储。此外,基于磷化铟的光电集成平台可实现量子比特与光子的高效耦合,为分布式量子计算和量子网络提供硬件基础。近年来,研究机构已成功在磷化铟衬底上构建可扩展的量子点阵列,并实现多量子比特的纠缠操作,预示着其在未来量子处理器中的广泛应用前景。
在人工智能加速芯片方面,磷化铟衬底有望突破传统硅基计算的性能瓶颈。AI 训练和推理任务对数据吞吐率和能效比要求极高,而磷化铟基高速电子器件(如HBT 和HEMT)具备超高的开关速度和低功耗特性,适用于构建超高速模拟计算单元和光电混合神经网络。例如,基于磷化铟的光电互联技术可实现芯片内部和芯片间的超高速数据传输,缓解“内存墙”问题,提升AI 芯片的整体运算效率。此外,磷化铟基太赫兹调制器和探测器可用于开发新型类脑计算架构,利用光子的并行处理能力加速神经网络运算。
在下一代通信技术方面,6G 网络预计将工作在亚太赫兹(100 GHz–1 THz)频段,以实现Tbps 级的超高速无线传输。磷化铟衬底因其卓越的高频响应能力,成为制造太赫兹发射器、接收器和混频器的核心材料。基于磷化铟 HBT 和 HEMT 的太赫兹MMIC(单片微波集成电路)已在实验室实现超过 500 GHz 的振荡频率,为未来 6G 终端和基站提供关键器件支持。此外,磷化铟基光电集成技术还可用于构建超高速光无线混合通信系统,结合光纤骨干网与太赫兹无线接入,实现无缝的全域高速连接。
这些新兴技术的发展不仅扩大了磷化铟衬底的应用场景,也对其材料性能和制造工艺提出了更高要求。例如,量子计算需要极低缺陷密度的单晶衬底,AI 芯片要求高集成度的异质集成技术,而6G 通信则依赖大尺寸、低成本的晶圆量产能力。因此,未来磷化铟产业的发展方向将聚焦于提升晶体质量、优化外延生长工艺、推进大尺寸晶圆制备,并探索与硅基平台的深度融合,以满足多元化高端应用的需求。
磷化铟衬底的未来发展趋势
展望未来,磷化铟衬底的发展将围绕大尺寸化、成本优化、异质集成三大核心方向持续推进,以应对日益增长的高性能半导体需求。首先,大尺寸晶圆的产业化将成为行业重点。目前,主流磷化铟衬底仍以 4 英寸为主,但 6 英寸晶圆的研发已取得实质性进展。更大尺寸的晶圆不仅能提高单次外延生长的器件数量,降低单位芯片制造成本,还能更好地适配现代半导体代工厂的标准化工艺流程,提升生产效率。
然而,磷化铟晶体生长过程中磷的高蒸气压和热应力控制难题使得大尺寸单晶制备极具挑战。未来,垂直梯度凝固法(VGF)和改进型液封直拉法(LEC)将进一步优化,结合先进的热场设计和原位监控技术,有望实现 6 英寸及以上晶圆的稳定量产,推动磷化铟器件向规模化制造迈进。
其次,降低生产成本是扩大磷化铟应用范围的关键。当前,磷化铟衬底的价格远高于硅和砷化镓,限制了其在消费电子等成本敏感领域的普及。未来,行业将通过多种途径降低成本: 一是优化原料利用率,采用闭环回收技术减少高纯度铟和磷的浪费;二是提升晶体生长速率和良率,缩短生产周期;三是发展薄膜转移技术,如将高质量磷化铟外延层从原生衬底剥离并键合至低成本硅或玻璃基板上,实现“一次生长、多次使用”,大幅降低材料成本。此外,自动化生产线的引入也将减少人工干预,提高一致性并降低制造费用。
第三,异质集成技术将成为磷化铟发展的战略方向。单一材料难以满足未来多功能、高性能系统的需求,而磷化铟与其他半导体平台(如硅、氮化镓、SOI)的异质集成能够充分发挥各自优势。例如,通过晶圆级键合或微转移打印技术,可将磷化铟基光源与硅基光路集成,构建高性能硅光芯片;或将磷化铟HEMT 与GaN HEMT 集成,开发兼具高频率和高功率的混合射频模块。此类集成方案不仅提升了系统性能,还减少了封装复杂度和信号损耗,适用于数据中心、5G/6G 基站和自动驾驶雷达等高端应用场景。
03
砷化镓衬底材料主要应用于射频、LED、激光器等领域
砷化镓材料市场小而美,德日中企业占主导地位
砷化镓是砷与镓的化合物,砷化镓作为半导体材料具有优良的特性,是当代国际公认的继硅之后最成熟的化合物半导体材料,具有高频率、高电子迁移率、高输出功率、低噪音以及线性度良好等优越特性,是光电子和微电子工业最重要的支撑材料之一。使用砷化镓衬底制造的半导体器件,具备高功率密度、低能耗、抗高温、高发光效率、抗辐射、高击穿电压等特性,因此砷化镓衬底被广泛用于生产LED、射频器件、激光器等器件产品。但与磷化铟衬底类似,砷化镓衬底市场规模相对较小。砷化镓是光电及手机网通高频通讯不可或缺的元件,未来在新一代显示(Mini LED、Micro LED)、物联网、无人驾驶、人工智能、可穿戴设备等新兴市场需求的带动下,砷化镓衬底市场规模将逐步扩大。
由于行业整体规模较小及非标准化程度较高,全球砷化镓衬底市场集中度较高。根据Yole 统计,2019 年全球砷化镓衬底市场主要生产商包括Freiberger、Sumitomo和北京通美,其中Freiberger 占比28%、Sumitomo 占比 21%、北京通美占比13%。目前国内涉及砷化镓衬底业务的公司较少,除北京通美外,广东先导先进材料股份有限公司等公司在生产LED 的砷化镓衬底方面已具备一定规模。目前,主流商用砷化镓衬底直径已从 3 英寸扩展至 6 英寸,部分领先企业正推进 8 英寸晶圆的研发,以满足大规模集成电路制造的需求。

得益于下游应用市场需求持续旺盛,砷化镓衬底市场规模将持续扩大。根据Yole 测算,2019 年全球折合二英寸砷化镓衬底市场销量约为 2000 万片,预计到 2025 年全球折合二英寸砷化镓衬底市场销量将超过 3500 万片;2019 年全球砷化镓衬底市场规模约为 2 亿美元,预计到 2025 年全球砷化镓衬底市场规模将达到 3.48亿美元,2019-2025 年复合增长率 9.67%。
砷化镓材料主要应用于射频、LED、激光器等领域
砷化镓是当前主流的化合物半导体材料之一自2010 年起,随着LED 以及智能手机的普及,砷化镓衬底进入了规模化应用阶段,例如 2017 年, iPhone X 首次引入了 VCSEL 用于面容识别,生产 VCSEL 需要使用砷化镓衬底,砷化镓衬底应用场景再次拓宽。2021 年,随着Apple、Samsung、LG、TCL 等厂商加入Mini LED 市场,砷化镓衬底的市场需求将迎来爆发性增长。目前砷化镓衬底下游应用主要涉及5G 通信、新一代显示(Mini LED、Micro LED)、 无人驾驶、人工智能、可穿戴设备等多个领域。
砷化镓材料在射频器件中的应用
射频器件是实现信号发送和接收的关键器件,射频器件主要包括功率放大器、射 频开关、滤波器、数模/模数转换器等器件,其中,功率放大器是放大射频信号的器件,其直接决定移动终端和基站的无线通信距离和信号质量。由于砷化镓具有高电子迁移率和高饱和电子速率的显著优势,因此砷化镓一直是制造射频功率放大器的主流衬底材料之一。4G 时代起,4G 基站建设及智能手机持续普及,用于制造智能手机射频器件的砷化镓衬底需求量开始上升。
进入5G 时代之后,5G 通信对功率、频率、传输速度提出了更高的要求,使用砷化镓衬底制造的射频器件非常适合应用于长距离、长通信时间的高频电路中,因此,在 5G 时代的射频器件中,砷化镓的材料优势更加显著。随着5G 基站建设的大量铺开,将对砷化镓衬底的需求带来新的增长动力;与此同时,单部 5G 手机所使用的射频器件数量将较 4G 手机大幅增加,也将带来对砷化镓衬底需求的增长。
伴随5G通信技术的快速发展与不断推广,5G 基站建设以及 5G 手机的推广将使砷化镓基射频器件稳步增长。根据 Yole 预测,2025 年全球射频器件砷化镓衬底(折合二英寸)市场销量将超 965.70万片,2019-2025年年均复合增长率为6.32%。 2025 年全球射频器件砷 化镓衬底市场规模将超过9800 万美元,2019-2025 年年均复合增长率为5.03%。

砷化镓材料在LED 中的应用
LED 是由化合物半导体(砷化镓、氮化镓等)组成的固体发光器件,可将电能转化为光能。不同材料制成的 LED 会发出不同波长、不同颜色的光,LED 按照发光颜色可分为单色LED、全彩 LED 和白光LED 等类型。LED 根据芯片尺寸可以区分为常规 LED、Mini LED、Micro LED 等类型,其中常规 LED 主要应用于通用照明、户外大显示屏等,Mini LED、Micro LED 应用于新一代显示。
随着 LED 照明普及率的不断提高,常规 LED 芯片及器件的价格不断走低。常规 LED 芯片尺寸为毫米级别,对砷化镓衬底的技术要求相对较低,属于砷化镓衬底的低端需求市场,产品附加值较低,该等市场主要被国内砷化镓衬底企业占据,市场竞争较为激烈;而新一代显示所使用的 Mini LED 和 Micro LED 芯片尺寸为亚毫米和微米级别,对砷化镓衬底的技术要求较高,市场主要被全球第一梯队厂商所占据。
根据Yole 预测,2019 年全球LED 器件砷化镓衬底市场(折合二英寸)销量约为 846.9 万片,预计到 2025 年全球 LED 器件砷化镓衬底(折合二英寸)市场销量将超过 1300 万片,年复合增长率为 7.86%;2019 年全球 LED 器件砷化 镓衬底市场规模约为6800 万美元,预计到 2025 年全球 LED 器件砷化镓衬底市场规模将超过9600 万美元,相较 2019 年将增加接近3000 万美元的市场规模。


Micro LED 指使用微米发光二极管,即芯片尺寸小于 50μm 的LED 器件作为像素 发光源的高密度LED 阵列显示技术。除显示效果的进一步提升外,Micro LED 技术可解决Mini LED 技术无法适用于小尺寸屏的局限性,未来可广泛应用于手机、平板、手表、AR/VR 设备、笔记本电脑、各尺寸高清电视等应用场景。目前,由于Micro LED 芯片尺寸较小,制造及封测技术难度较高,其规模商业化需要产业链整体配套水平的提高,尚需一定时间。Micro LED 显示技术一旦实现产业化,其对砷化镓衬底的需求将有望呈几何级数增长。

根据Yole 预测,Mini LED 及 Micro LED 器件砷化镓衬底的需求增长迅速,2025 年全球Mini LED 及Micro LED 器件砷化镓衬底(折合二英寸)市场销量将从2019 年的207.90 万片增长至613.80 万片,年复合增长率为 19.77%;2019 年全球Mini LED 及Micro LED 器件砷化镓衬底市场规模约为1700 万美元,预计到2025 年全球砷化镓衬底市场规模将达到 7000 万美元,年复合增长率为 26.60%。

砷化镓材料在激光器中的应用
激光器是使用受激辐射方式产生可见光或不可见光的一种器件,构造复杂,技术 壁垒较高,是由大量光学材料和元器件组成的综合系统。利用砷化镓电子迁移率高、光电性能好的特点 ,使用砷化镓衬底制造的红外激光器、传感器具备高功率密度、低能耗、抗高温、高发光效率、高击穿电压等特点,可用于人工智能、无人驾驶等应用领域。
根据 Yole 预测,激光器是砷化镓衬底未来五年最大的应用增长点之一。预计到 2025 年,全球激光器砷化镓衬底(折合二英寸)的市场销量将从 2019 年的106.2 万片增长至330.3 万片,年复合增长率为20.82%;预计到 2025 年,全球激光器砷化镓衬底市场容量将达到 6,100 万美元,年复合增长率为 16.82%。

在具体应用方面,未来五年激光器砷化镓衬底的需求增长主要由 VCSEL 的需求 拉动。VCSEL 是一种垂直于衬底面射出激光的半导体激光器,在应用场景中,常常在衬底多方向同时排列多个激光器,从而形成并行光源,用于面容识别和全身识别,目前已在智能手机中得到了广泛应用。
VCSEL 作为 3D 传感技术的基础传感器,随着 5G 通信技术和人工智能技术的发展,同时受益于物联网传感技术的广泛应用,VCSEL 的市场规模不断增长,特别是以 VCSEL 为发射源的 3D 立体照相机将会迎来高速发展期,3D 相机是一种能够记录立体信息并在图像中显示的照相机,可以记录物体纵向尺寸、纵向位置以及纵向移动轨迹等。此外,VCSEL 作为3D 传感器,在生物识别、智慧驾驶、机器人、智能家居、智慧电视、智能安防、3D 建模、人脸识别和 VR/AR 等新兴领域拥有广泛的应用前景。
根据 Yole 预测,随着 3D 传感技术在各领域的深度应用,VCSEL市场将持续快速发展,继而加大砷化镓衬底的需求。2019 年,全球VCSEL 器件砷化镓衬底(折合二英寸)销量约为93.89 万片,预计到2025 年将增长至 299.32 万片,年复合增长率达到 21.32%;2019 年全球 VCSEL 器件砷化镓衬底市场规模约为 2100 万美元,预计到 2025 年全球砷化镓衬底市场规模将超过 5600 万美元,年复合增长率为17.76%。

砷化镓材料在新兴领域中的应用
人工智能(AI)边缘计算、6G 通信和柔性电子等前沿领域的兴起,砷化镓衬底正迎来前所未有的发展机遇,而砷化镓凭借其优异的高频响应、低功耗特性和光电集成能力,成为支撑这些技术演进的关键材料之一。
在人工智能边缘计算领域,终端设备对实时数据处理和低延迟推理的需求日益增长,推动了高性能、低功耗 AI 加速芯片的发展。砷化镓基射频器件因其高电子迁移率和低噪声特性,被广泛用于 AI 终端的无线连接模块,如 5G 毫米波通信和Wi-Fi 6E/7 射频前端。此外,基于砷化镓的光电集成技术可实现芯片级光互连,提升 AI 芯片内部的数据传输速率,缓解“内存墙”问题。例如,利用砷化镓 VCSEL阵列与硅基光路的异质集成,可构建超高速光互联模块,支持AI 训练集群中的大规模并行计算。未来,随着 AIoT(人工智能物联网)设备的普及,砷化镓将在智能传感器、可穿戴设备和无人系统中发挥更广泛的作用。
在6G通信技术方面,未来网络预计将工作在亚太赫兹(100 GHz–1 THz)频段,以实现Tbps 级的超高速无线传输。砷化镓HBT 和HEMT 器件具备优异的高频响应能力,已在实验室实现超过 300 GHz 的振荡频率,为 6G 终端和基站提供关键器件支持。此外,砷化镓基 MMIC(单片微波集成电路)可用于构建太赫兹收发模块,支持超高速无线接入和超高清全息通信。与硅基技术相比,砷化镓在毫米波至太赫兹频段的功率效率和噪声性能更具优势,有望在 6G 基础设施建设中占据重要地位。
在柔性电子领域,砷化镓衬底通过薄膜转移技术可实现与柔性基板的异质集成,推动可穿戴设备和生物电子的发展。例如,将超薄砷化镓外延层剥离并转移至聚合物基板上,可制造出可弯曲的光电探测器、微型太阳能电池和高频传感器,适用于智能医疗贴片、柔性显示背光和自供电物联网节点。此类技术不仅提升了器件的机械适应性,还保留了砷化镓原有的高性能优势,为下一代柔性电子系统提供关键材料支撑。
砷化镓衬底未来发展趋势
展望未来,砷化镓衬底市场的发展将呈现三大趋势:技术升级推动国产替代、产业链协同创新加速、新兴应用领域持续拓展。首先,随着国内企业在晶体生长、外延技术和器件制造等环节的技术突破,砷化镓材料的国产化进程正在加快。北京通美、先导科技、乾照光电等本土企业已具备 2–6 英寸砷化镓衬底和外延片的自主研发与生产能力,逐步打破国外厂商的垄断格局。未来,随着国家对半导体产业支持力度的加大,国产砷化镓衬底的良率和一致性将进一步提升,成本优势将更加明显,推动国产替代进程加速。
其次,产业链上下游的协同创新将成为提升市场竞争力的关键。从上游的高纯度镓、砷原材料供应,到中游的衬底、外延片制造,再到下游的射频器件、光电子芯片封装,整个产业链的紧密协作将有助于优化工艺流程、降低成本并缩短产品开发周期。例如,衬底厂商与外延厂联合开发定制化晶圆,以满足特定器件的性能需求;射频芯片设计公司与衬底供应商共同推进新型 HBT 和 HEMT 结构的研发,提升器件在毫米波频段的性能表现。
最后,随着6G通信、量子传感、柔性电子等前沿技术的发展,砷化镓衬底的应用边界将持续扩展。例如,在 6G 太赫兹通信系统中,砷化镓基异质结器件有望在100 GHz 以上频段发挥关键作用;在可穿戴健康监测设备中,基于砷化镓的柔性光电传感器可实现高精度生理信号采集。这些新兴应用将为市场带来新的增长点,推动砷化镓衬底产业迈向更高水平的发展阶段。
05
全球第二代半导体衬底材料龙头企业

1. 日本住友电气工业株式会社
Sumitomo 成立于 1920 年,是世界著名的通信厂商和工业制造厂商之一。日本住 友电气广泛从事信息通信、汽车制造、电子仪器设备、能源环境和产业设备与材料行业的生产经营,在世界各国已经设有 200 余家子公司。日本住友电气在砷化镓衬底领域的产品包括 2-8 英寸砷化镓单晶衬底,在磷化铟衬底领域的产品包括 2-6 英寸磷化铟半导型和半绝缘单晶衬底。公司利用其在材料科学和精密制造方面的长期积累,采用液封直拉法(LEC)等先进技术,能够稳定生产高质量、大尺寸的GaAs 和InP 单晶锭,并将其加工成高纯度、低缺陷密度、高均匀性的晶圆。
2. 德国费里伯格化合物材料公司(Freiberger)
Freiberger 成立于 1949 年,企业主要生产半绝缘和半导体砷化镓衬底产品,其产品广泛应用于微波、毫米波射频器件、光通信以及高端探测器等领域。Freiberger目前拥有 VGF 和 LEC 工艺经验积累和良好的质量控制能力。,能够提供从 2 英寸到6 英寸的各种规格的砷化镓和磷化铟晶圆,并可根据客户特定需求进行定制,如不同的掺杂类型(铬掺杂、硒掺杂等)、晶向和电阻率,以满足高性能器件制造的严苛要求。2021 年公司被 Soitec 收购,此举极大地增强了其发展动力。作为Soitec 集团的一部分,公司获得了更强大的财务支持和战略协同。Soitec 计划对FCM 进行大规模投资,旨在显著提升其砷化镓和磷化铟衬底的产能和技术水平,特别是在大尺寸和高质量方面。这一整合不仅巩固了公司在欧洲市场的领导地位,也使其能更好地服务于全球客户,尤其是在5G/6G 通信、数据中心光互联和汽车电子等高速增长的领域。
3. 北京通美
北京通美技术股份有限公司是全球 III-V 族化合物半导体衬底领域的核心供应商之一,依托其母公司美国AXT 公司的深厚技术积累和全球化布局,已发展成为该细分市场中与国际巨头同台竞技的领军企业。在核心技术方面,北京通美拥有完整且自主可控的技术体系。公司是全球范围内少数掌握 8 英寸砷化镓衬底及 6 英寸磷化铟衬底生产技术的企业之一,这使其在大尺寸化趋势下具备显著的先发优势。根据Yole 的统计数据,2020 年,北京通美在全球磷化铟衬底市场的占有率高达36%,位居全球第二;在砷化镓衬底市场,2019 年市占率 13%,位列全球第四,展现了强大的市场竞争力。
截至 2022 年 6 月,公司已拥有 61 项发明专利,并将大量工艺诀窍(Know-How)作为商业秘密进行严格保护。 公司高度重视供应链安全与垂直整合。公司不仅生产下游衬底,还向上游延伸,自产PBN 坩埚、高纯金属等关键原材料,从源头保障了高品质供应,有效控制了生产成本和交货周期。这种一体化的布局模式,使其在面对原材料波动时更具韧性。 公司建立了覆盖全球的客户网络,主要客户包括欧司朗(Osram)、艾迈斯半导体(ams OSRAM)、IQE、II-VI(现 Coherent)、Meta、Qorvo、Skyworks、Broadcom、稳懋半导体(Win Semiconductors)、三安光电、长光华芯等国内外知名外延片厂商、代工厂商和芯片器件制造商。公司于2022 年启动科创板 IPO,计划募集资金11.67 亿元,主要用于建设年产 50 万片 8 英寸砷化镓衬底的新产能,并补充流动资金。 (参考来源:国泰海通证券研究所)